陰影區以 pK1 = 2.34 與 pK2 = 9.60 為中心,顯示這些區域之 pH 值具有最大的緩衝能力。 胺基酸之滴定。 圖 3-11 化學環境對 pKa 值之作用效應。 滴定曲線可估算胺基酸帶電情形 另一項衍伸自胺基酸滴定曲線的資訊是胺基酸的淨電荷與環境溶液 pH 值之間的關係。以甘胺酸而言,在 pH 5.97 時,即其兩個滴定階段之間的曲線轉折變化點。此時甘胺酸主要以雙極性型態存在,即完全離子化但不帶淨電荷。 胺基酸淨電荷為 0 的特定 pH 值稱為等電點(isoelectric point)或等電 pH 值(isoelectric pH),簡稱為 pI。 胺基酸彼此之間酸鹼性質各異各種胺基酸彼此之間共有之性質可讓我們將其酸鹼性質簡化歸納出幾個通則:
當需要時會因一小段肽鏈被切除而具有活性 - 切除活化作用為一不可逆的調節方法3. 蛋白質的異位調節作用精氨酸此調節作用是多種代謝路徑中調節酵素或異位酵素的活性調控方式 胰蛋白酶 腸道生肽脢 - 如代謝路徑的終產物(調節劑)之回饋抑制調控* - 當調節劑與蛋白質的調節部位接合後,引發該部位的構形發生變化,此變化因四級結構中不同次單元的相互接觸而傳達到催化部位,因而改變催化部位的特性,使蛋白質的活性改變* - 以酵素為例,精氨酸較普遍的是改變酵素對受質的親和力,少數則是改變酵素的催化效率 4. 蛋白質的共價修飾作用肝糖代謝的調控為共價修飾作用的最佳例子
R. Bruce Merrifield 的關鍵新發明是將胜肽之一端連接在固相擔體上來進行合成反應。此固相支持物是一種不溶性的聚合物(樹脂),類似管柱層析實驗中所用的填充物。 胜肽就是在此固相擔體上以重複循環之標準反應組合將胺基酸殘基一個接一個依序聯結而成(圖3-29)。 在每個連續性的步驟中,胺基酸上的保護基可避免無謂的副反應發生。
也開啟了胺基酸治療之新紀元。因此了解精氨酸之來龍去脈,將有助於生命奧秘之解答。㆓十㆒世紀分子生物醫學突飛猛進加㆖基因遺傳學之奧妙逐步解祕,終將開啟了㆟類另㆒扇窗。因此吾㆟更需了解胺基酸之作用生理,以期解開㆟類生存健康疾病之奧妙。 因此本文旨要探討:精胺酸生理生化作用暨基礎生物學。這包括:精胺酸在健康疾病所扮演之不同角色。本文分成㆘列段落。並將逐㆒介紹:㆒、胺基酸簡介㆓、精胺酸需求暨食物來源㆔、精胺酸於腸胃道運送㆕、精胺酸如何運送入肝細胞五、精胺酸合成與代謝 六、精胺酸與聚胺合成 七、精胺酸與肌酸酐形成八、精胺酸與嘧啶形成九、精胺酸與㆒氧化氮形成 十、精氨酸與荷爾蒙分泌十㆒、精胺酸副作用/作用十㆓、精胺酸在健康㆟< 疾病之角色(綜論) 希望國㆟對於胺基酸在㆟體內生理生化作用有所全盤了解。尤其是了解㆟類精胺酸之新陳代謝及來龍去脈能有所助益。
例如異白胺酸(isoleucine) ‵白胺酸(leucine)、纈胺酸伸劊旃句等疏水性強的胺基酸 Y 通常會隱沒在蛋白質的內部 。在藉由疏水性所引發之折疊(f0lding)過程中扮演重要角刨黴佗脯胺酸(pmline)由於其分子本身之結構特徵 Y 視其在序列中出現的位豊 】而顯現改變二級結構特徵或誘導結構產生之 特殊性質岫)。此外 Y 位於蛋白質結合部位之酪胺酸佝m鋤ne)‵ 色胺酸(tryptophan)、胺基酸(hiStidine)等胺基片段在蛋白質與配體之反應中亦扮演重要角色姵冗叭 Villar 及Koehler應用 SWISS-PROT 資料厙提供之蛋白質相關資訊 Y 分析了總序列長度在 50個胺基酸以下之胜肱中胺基酸之組謎叭 結果顯示在小型蛋白質中 。半胱胺酸 (cysteine)‵ 色胺酸與苯丙胺酸(phenylanahne)出現之比率最高。相對而吉,組成中疏水性較顯著之白胺酸及異白胺酸出現較少。出現比率最低者為麩胺酸(glutamic acid)。此一組成之趨勢特徵皆與是否有利胜肱與其目標物問反應之進行息息相關。而半胱胺酸在組成中之高含量則導因於兩個半胱胺酸問會形咸雙硫鍵的特殊性質。 半胱胺酸中之硫基仙耐)是所有胺基酸支鏈中化學活性最強之官能基。蛋白質 中常可見到兩個半胱胺酸之硫基形咸共價鍵即為雙硫鍵個一)。在小型蛋白質中半胱胺酸出現 的比率相當高。因雙硫鍵之形成可增強蛋白質之穩定性,亦具有維持特定構型之功能 。
2025年7月1日 星期二
關鍵新發明是將胜肽之一端連接在固相擔體上來進行合成反應。此固相支持物是一種不溶性的聚合物(樹脂),類似管柱層析實驗中所用的填充物。 胜肽就是在此固相擔體上以重複循環之標準反應組合將胺基酸殘基一個接一個依序聯結而成
訂閱:
張貼留言 (Atom)
沒有留言:
張貼留言