半胱胺酸由其 硫醇基提供;天冬醯胺與麩胺醯胺則由其醯胺基提供。 monosodium glutamate(麩胺酸-鈉) — 味素成分 兩分子半胱胺酸很容易經由氧化作用形成具有雙硫鍵結之產物胱胺酸(cystine)(圖3-7),此經由雙硫鍵聯結之殘基則變得極為疏水性(非極性)。雙硫鍵在許多蛋白質結構中扮演非常特別的角色,它可能將蛋白質分子的不同區域或是將兩條多作共價鍵結。 圖3-7 顯示兩分子半胱胺酸可氧化形成具雙硫鍵的胱胺酸,胺基酸亦能進行可逆還原反應。雙硫鍵之形成有助於穩定許多蛋白質的結構。 帶正電(鹼性)R 基團 在 pH 7.0 時 R 基團帶最強正電之胺基酸是離胺酸
後者是來自於血漿或是精胺酸酉每分解精胺酸之細胞內崩解產物。它可轉化成腐肉鹼胺。後者是鳥胺酸去羥酉每之作用。精胺酸崩解乃是聚胺形成之初步,而細胞內精胺酸之濃度控制者多胺之形成 44。 在聚胺合成過程㆗,胺基酸前身所扮演之角色或許可解釋精胺酸分解酉每在許多組織㆗分布很廣。㆒旦構成之後,腐肉鹼胺在㆒系列反應㆗會轉換成精胺質,這過程需要胺基㆛晴之加入㆒此化學結構團是來自於㆙硫胺酸。它是介由㆗間物質 S-腺 ㆙硫胺酸之催化以及精胺質合成酉每之作用合成。( 詳見圖㆔ ),此種反應作用包含精胺質暨精素合成酉每是公認為不可逆之反應。 但是精素轉換回去成精胺質及腐肉鹼胺仍可發生 ( 圖㆔ ),但必須經由特殊的酉每如:精胺質-N-轉換酉每以及聚胺氧化酉每之個別作用 46。 聚胺之功能特別是提高細胞之增生,以及組織之成長以及分化,扮演相當重要之角色 45。
小腸能分泌內激酶,能活化胰蛋白酶2. 胰蛋白酶能繼續活化其他的酵素,如:胰凝乳蛋白酶、 彈性蛋白酶等3. 這些酵素都具有特定的作用位置 內激酶胰蛋白酶原胰凝乳蛋白酶原彈性蛋白酶 羧基胜肽酶 後端小腸(空腸、迴腸)會分泌胺基胜肽酶、雙胜肽酶,繼續作用蛋白質和胺基酸,最後被腸道吸收 所有可吸收的水溶性營養素,都會經過肝門靜脈到達肝臟代謝 胺基酸雙胜肽三胜肽蛋白質的功用供給熱量 建構體組成 調節酸鹼 其他
蛋白質結構可分為數個層級蛋白質結構一般被定義為四個層級(圖3-16)描述整個多肽鏈中用以連結每個胺基酸殘基之共價鍵結 (主要是胜肽鍵與雙硫鍵)者稱為一級結構(primary structure),其主要組成元件即為胺基酸殘基之序列 二級結構(secondary structure)指的是由胺基酸殘基形成的一些特定的穩定排列方式,在蛋白質中會是一再重複出現的結構模式 三級結構(tertiary structure)描述的是多肽的三度空間摺疊 當一蛋白質具有兩個或以上的次單元,則其次單元在空間中之排列則稱為四級結構(quaternary structure)
蛋白質與親和基的接合多經由非共價作用力,因此接合為一可逆的過程每個蛋白質與同一種親和基的接合可發生在分子內的一個或多個部位 - 如發生在多個部位時,與同一種親和基接合的能力可能相同或不同,因此產生了接合的協同性,此種關係稱為同質性效應,如血紅素與O2的接合 一個蛋白質分子內也可有不同種類的親和基接合部位- 不同親和基的接合部位在親和基接合時,會有相互溝通(cross-talk)的特性,此種關係稱為異質性 效應,如血紅素與O2的接合受2,3-BPG及波爾效應的影響3.
2025年7月1日 星期二
會轉換成精胺質,這過程需要胺基㆛晴之加入㆒此化學結構團是來自於㆙硫胺酸。它是介由㆗間物質 S-腺 ㆙硫胺酸之催化以及精胺質合成酉每之作用合成。( 詳見圖㆔ ),此種反應作用包含精胺質暨精素
訂閱:
張貼留言 (Atom)
沒有留言:
張貼留言