2026年2月4日 星期三

游離胺基與一個游離羧基,分別位於胜肽鏈狀結構兩端(圖3-15)。這些基團在胜肽中也如同它們在游離態時一樣可以離子化,但其解離常數不同於胺基酸,因為此時帶相反電荷之基團並非聯結

 胜肽片段排序 先將蛋白質以非胰蛋白酶之另一種蛋白酶或化學試劑加以切割(如溴化氰CNBr僅會切割甲硫胺酸羧基端之肽鍵),以此第二種方法得到之胜肽片段也如同前述加以定序及分離。  兩種方法得到之胜肽片段均完成定序之後,將兩者加 以比對,從中找到連續性且互相重疊之序列(圖3- 27)。重疊序列的出現有助於我們瞭解胜肽片段的正確排列順序。如果胺基端殘基在蛋白切割前就已得知,則能協助我們判斷胺基端片段序列為何。進行兩種方法也有助於排除個別定序上的可能錯誤,如果第二種方法完全無法獲得任何與第一種方法具連續性重疊的序列,則必須嘗試第三、甚至第四種切割方法,以獲得必要的重疊序列。  圖3-27 顯示切割蛋白質、定序及胜肽片段排序。首先決定出蛋白質樣品之胺基酸組成及其胺基端殘基。緊接著將可能有的雙硫鍵還原,以使定序有效進行。在此例中,蛋白質分子僅有兩個半胱胺酸殘基,因此只有一對可能之雙硫鍵形成位置。當多胜肽含有三個或以上的半胱胺酸殘基時,則必須考慮更多可能之組合方式產生雙硫鍵之位置。 圖 3-27 切割蛋白質、定序及胜肽片段排序。

鮮果重量調查 : 為每小區採收 10 株之加總重量;供試青椒品種為翠綠星、供試胡瓜品種為秀燕。 四、三合一微生物肥料於草莓與番茄應用測試試驗田土壤性質分析如( 表一),定植前同樣施用燕子牌十全基肥有機質肥料( 臺益工業股份有限公司,氮:3.8%、磷:2.8%、鉀:3.5%、有機質:72%),依據每公頃推薦用量:12,000 公斤;試驗採單因子,完全逢機區集設計 (RCBD),A 處理:三合一微生物肥料稀釋 1,000 倍、B 處理:芽孢桿菌 + 化學肥料 (MLBV + CF) 稀釋 1,000 倍、C 處理:胺基酸 + 化學肥料 (AA + CF) 稀釋 1,000 倍、D 處理:純化學肥料稀釋 1,000 倍之對照組 (CK1)、E 處理:施用水之對照組 (CK2) 等 5 處理,其中 A、 B、C 處理之化學肥料成分含量均相同,生長期每 2 周使用生長肥 (AG)1 次共 3 次,開花期後每 2 周使用結果肥 (AF) 1 次共 3 次,供試草莓品種為香水。試驗區每 1 種處理共 4 重複,每重複 15 株,株距 25 cm,栽種密度 4,500~5,000 株 / 分地。調查鮮果重量為每小區取樣 50 粒之加總重量、糖酸比為每小區取樣 20 粒量測糖度與酸 度之比例;供試番茄品種為玉女,胺基酸番茄試驗區調查鮮果重量為每小區採收 10 株之加總重量,並於每小區取樣 20 粒量測糖度。 結果與討論一、芽孢桿菌菌種鑑定與登記要件齊備本研究自苗栗縣大湖鄉之草莓根圈土壤分離篩選之芽孢桿菌 MLBV19-3,由定序結果可以得知,於 Bacillus 菌群中,16S rDNA 基因並非為一個好的判別菌種之鑑定基因,相較 gyrB 基因,則較為能區別菌種,MLBV19-3 菌株之 gyrB 基因序列於 NCBI 資料庫比對,結果與 Bacillus velezensis AL7(accession number: CP045926.1) 相似度高達 99.41%;進一步委託食品工業研究所進行菌種鑑定結果同樣為貝萊斯芽孢桿菌 B. velezensi ( 報告書號碼 :2016D153);再利用中央研究院生物多樣性研究中心之臺灣物種名錄網站查詢 (https://taibnet.sinica.edu.tw/),貝萊斯芽孢桿菌 B. velezensi編號為 422896,微生物肥料登記證申辦須知公告,係屬存在於國內自然環境者之菌種,得免附環境生態試驗報告;也委託藥物毒物試驗所完成 GLP 口服與肺呼吸急毒性之動物毒理試驗中英文報告 ( 報告編號:0994G19MAO 與 0994G19MAP),證實無生物毒性。MLBV19-3 也具溶磷、溶鉀及促進植物生長等微生物肥料的功能,溶 磷活性經國立中興大學土壤調查檢驗中心檢測達 1,117.3 µg/ml/day( 磷酸三鈣 )( 報告編號 :105F0795)、溶鉀活性達 25.0 µg/ml/day( 鉀長石 )( 報告編號:107F0270),微生肥料登記所需之相關要件均已齊備。 二、三合一微生物肥料於青椒與胡瓜先期測試由青椒與胡瓜先期田間測試結果顯示,

此種酉每系統至少有兩種不同之家族。此結構型式是鈣及調鈣蛋白依賴型。此原始型態存於神經元、內皮細胞、血小板、巨噬細胞、間質細胞以及心內膜及心肌細胞。它主要存於細胞膜緊接著微粒形成 55-57。但仍有少部分胞質液之㆒氧化氮合成酉每-後者較少鈣質及調鈣蛋白依賴 58。這些酉每系統會產生持續性低流量㆒氧 化氮釋放。另外㆒胺基酸氧化氮合成酉每乃是誘導型。它既不被表現,也非鈣質及調鈣蛋白依賴型 57-61。後者存於其他組織,包括血管平滑肌、腫瘤細胞、肝細胞、巨噬細胞、庫氏細胞、㆗性白血球、心肌細胞及纖維母細胞 57-61。此種合成酉每 ( NOS ) 僅對於細胞素有反應而產生 ( 諸如干擾素 γ 以及內毒素 ) 而且會使 ㆒氧化氮產生量急遽增加 20 倍之多 62。

胜肽可由其離子化行為加以區分胜肽僅具一個游離胺基與一個游離羧基,分別位於胜肽鏈狀結構兩端(圖3-15)。這些基團在胜肽中也如同它們在游離態時一樣可以離子化,但其解離常數不同於胺基酸,因為此時帶相反電荷之基團並非聯結在同一個α碳原子上。其他不在末端上的胺基酸之α-胺基與α-羧基均以肽鍵共價聯結在一起,因此無法離子化,也不會對胜肽之整體酸鹼行為作出任何貢獻。 顯示此四肽具有一個游離α-胺基、一個游離 α-羧基與兩個離子化 R 基團。在 pH 7.0 時可離子化基團以紅色表示。 四肽具生物活性的胜肽與多胜肽之大小差異甚鉅許多小分子胜肽在極低濃度就能發揮功效,如一些脊椎動物之激素(荷爾蒙)就是小分子胜肽。  較大一些的胜肽稱為小多肽或寡肽,如胰臟激素-胰島素由兩條多肽組成,一條含30個胺基酸殘基,另一條則為21個。 有些蛋白質由單一多肽鏈組成,但另一些稱為多次單元(multisubunit)蛋白質者,則由兩條或以上的多肽以非共價性鍵結聯結在一起(表3-2)。多次單元蛋白質中的每條個別多肽可能完全相同或不同,如果至少有兩個相同次單元組成之蛋白質稱為寡聚化 (oligomeric)蛋白質;而相同的次單元則被稱為一個原聚體(protomers)。 表 3-2 一些蛋白質之分子資料 有些蛋白質是由兩條或以上之多肽鏈以共價性方式鍵結在一起,例如胰島素的兩條多肽鏈是以雙硫鍵聯結在一起。

也開啟了胺基酸治療之新紀元。因此了解胺基酸之來龍去脈,將有助於生命奧秘之解答。㆓十㆒世紀分子生物醫學突飛猛進加㆖基因遺傳學之奧妙逐步解祕,終將開啟了㆟類另㆒扇窗。因此吾㆟更需了解胺基酸之作用生理,以期解開㆟類生存健康疾病之奧妙。 因此本文旨要探討:精胺酸生理生化作用暨基礎生物學。這包括:精胺酸在健康疾病所扮演之不同角色。本文分成㆘列段落。並將逐㆒介紹:㆒、胺基酸簡介㆓、精胺酸需求暨食物來源㆔、精胺酸於腸胃道運送㆕、精胺酸如何運送入肝細胞五、精胺酸合成與代謝 六、精胺酸與聚胺合成 七、精胺酸與肌酸酐形成八、精胺酸與嘧啶形成九、精胺酸與㆒氧化氮形成 十、胺基酸與荷爾蒙分泌十㆒、精胺酸副作用/作用十㆓、精胺酸在健康㆟< 疾病之角色(綜論) 希望國㆟對於胺基酸在㆟體內生理生化作用有所全盤了解。尤其是了解㆟類精胺酸之新陳代謝及來龍去脈能有所助益。

沒有留言:

張貼留言