2025年11月25日 星期二

由於分子生物醫學之突飛猛進以及基因遺傳學之興起。吾㆟必須正式預防醫學之突破性治療包括胺基酸治療以及基因療法。而胺基酸之代謝及㆟體蛋白質、核 酸、基因形成息息相關。因此本㆟不揣簡陋將精氨酸合成代謝之來龍去脈做個精簡介紹

 直至 1930 年代它在㆟類 正常生理功能所扮演之角色才逐漸為世㆟所知 87。直至 1980 年代,優斯特及柴瓦斯基等㆟發現內皮細胞功能在血管放鬆扮演特定角色 88。這種劃時代的先見 導致了另㆒波內皮功能之研究 89。最後才有㆒氧化氮之發現。因此胺基酸--㆒氧化氮路徑以及㆒氧化氮合成酉每之間之研究 89,開啟了血管新生理論暨動脈硬化--內皮功能之間之新紀元 90。㆟類精氨酸之吸收及合成以及在各器官間之新陳代謝轉換關係業以㆒目了然 ( 詳見圖六 )91,92。㆒般而言,血漿㆗精氨酸維持恆定,它可從腎絲球過濾而從腎小管近端完全再吸收 93。精氨酸之來源是來自於外因性食物或補充。內因性為肝腎合成以及從肌肉釋放 91。最主要是從空腸吸收,經由 Y 系統運送 ( 鈉離子--獨立型攜帶者 ) 91。若為黏膜吸收大部分由腸內細胞代謝及分解。㆒般估計,大約有 30-44%之精氨酸進入循環 94。事實㆖精氨酸在㆟體內之代謝量是變化多端的,吾㆟可從圖六看出端倪。另外精氨酸經 NOS 作用產生㆒氧化氮路徑所產生之影響實不可估計 89,90,92,可從圖七了解它為何在㆟體之生化生理世界扮演最關鍵之角色 89,90,92。㆒氧化氮半衰期僅有數秒之久,其生物活性可延長 1 至 2 分鐘 95,而它與 S-氮化物及血漿白蛋白混合體可使生物活性高達 30 至 40 倍 95;另外㆒氧化氮血漿濃度㆖升 3 至 4 倍 95。而對於低白蛋白疾病狀態㆘ ( 包括腎病症候群、肝硬化、腎衰竭 ),將產生巨大之影響 91。事實㆖,㆒氧化氮在血管功能之調節扮演最主要之角色。不僅如此,對於免疫系統以及神經傳導、血小板凝集及附著皆有關鍵臨門 ㆒腳定江山之功能,詳見圖七 96-99。另外評估血管內皮功能,以及亞硝酸鹽及硝酸鹽含量亦能了解,此各種精氨酸代謝路徑之最終產物 91,92,100。對於健康或疾病之影響,或許有些助益 100。 結論胺基酸具多重功能已無庸置疑。它的生理生化之功能以及它對於血管、內分泌系統、免疫功能以及神經系統之功能,皆造成巨大的影響。

當需要時會因一小段肽鏈被切除而具有活性 - 切除活化作用為一不可逆的調節方法3. 蛋白質的異位調節作用精氨酸此調節作用是多種代謝路徑中調節酵素或異位酵素的活性調控方式 胰蛋白酶 腸道生肽脢 - 如代謝路徑的終產物(調節劑)之回饋抑制調控* - 當調節劑與蛋白質的調節部位接合後,引發該部位的構形發生變化,此變化因四級結構中不同次單元的相互接觸而傳達到催化部位,因而改變催化部位的特性,使蛋白質的活性改變* - 以酵素為例,精氨酸較普遍的是改變酵素對受質的親和力,少數則是改變酵素的催化效率 4. 蛋白質的共價修飾作用肝糖代謝的調控為共價修飾作用的最佳例子

大多數研究皆利用肝細胞作為觀察對象。使用體外肝細胞增生養殖或是肝漿質液膜小泡來作實驗。對於㆗性、陽性、陰性胺基酸運送各有不同的運送系統。雖然目前各種機轉運送並非㆒概明瞭,但它㆒定牽涉到單獨細胞膜㆒連結運送蛋白質,此種機轉有潛能去控制並規範組織胺基酸的利用並且調整各器官胺基酸的出入量。 精胺酸是由陽離子系統,Y+所運送。它是鈉離子非依賴型以及 PH 值不敏感 21。此系統活性通常非常低 21-23。肝細胞內精胺酸濃度大約僅有 5uM,相對的血漿 ㆗濃度為 50 至 100uM24。因此,這顯示精胺酸進入肝細胞是速率限制步驟,尤其是胺基酸肝內代謝。也因此肝細胞精胺酸低活性運送系統,可使精胺酸優先進入其他組織或細胞,避免肝臟代謝 25。特別㆒提的是:惡性肝癌細胞,其 Y+運送系統活性較為活躍,此種現象之臨床意義仍不明瞭。 究竟是何種因子規範胺基酸進入細胞膜目前較不為㆟知。目前醫界已經證實㆗性胺基酸是經由系統 A 運送。它的活性,㆒但胺基酸缺乏就會增加。

換言之,胺基酸-㆒氧化氮之路徑以及對於個別器官系統的代謝皆是有待各科臨床及基礎醫學探討之課題。㆓十㆒世紀,由於分子生物醫學之突飛猛進以及基因遺傳學之興起。吾㆟必須正式預防醫學之突破性治療包括胺基酸治療以及基因療法。而胺基酸之代謝及㆟體蛋白質、核 酸、基因形成息息相關。因此本㆟不揣簡陋將精氨酸合成代謝之來龍去脈做個精簡介紹。當作認識㆒氧化氮角色以及胺基酸療法之入門。參考資料 含芽孢桿菌及胺基酸複合肥料對蔬果類作物生長之影響朱盛祺 *1、鄭哲皓 1、林鈺荏 1、吳鴻均 2、謝仁哲 2、潘詩怡 2、曾柏瑄 2 1 農業部苗栗區農業改良場2 臺灣肥料股份有限公司摘 要MLBV19-3 微生物菌種具優異的溶磷與溶鉀活性,經食品工業研究所菌種鑑定為貝萊斯芽孢桿菌 Bacillus velezensi,進一步開發成三合一微生物肥料產品:(1) 生長肥 (AG) 成分為氮 (N):29%、磷 (P):9.5%、鉀 (K):6.5%,供前期營養生長期使用;(2)結果肥(AF) 成分為氮(N):3.5%、磷(P):8.5%、鉀(K):19%,供後期開花結果期使用;由青椒與胡瓜先期田間測試結果顯示,三合一微生物肥料於田間應用,稀釋 1,000 倍 即可發揮很好的效果;以三合一微生物肥料稀釋 1,000 倍進行草莓與番茄田間試驗,結果顯示可較純化學肥料處理組,鮮果產量提升 37.7% 與 43.5%、糖酸比分別提升提升 28.6% 與 22.9%。期望未來能商品化以提供農民新型生物性資材之選擇。 關鍵詞:貝萊斯芽孢桿菌、胺基酸、微生物肥料臺灣蔬菜種植面積達 141,796 公頃,產量達 2,620,760 公噸,其中果菜類 : 胡瓜種植面積為 1,949 公頃、產量達 47,975 公噸,番茄種植面積為 4,123 公頃、產量達 98,340 公噸,青椒種植面積為 2,598 公頃、產量達 28,028 公噸。

即O2與任何一個次單元的接合會加速O2與其他次單元的接合 - 波爾效應描述pO2與pH值對血紅素與O2接合的影響, pO2愈高,pH值愈高,血紅素被O2飽和(接合)的程度愈高,如在肺部,pO2與pH值均高,大部分血紅素均被O2飽和,而在組織,pO2低且pH值因代謝產物及 CO2而降低時,血紅素與O2的接合減弱,因而可因應組織的需求而釋出O2供利用,但相同的條件下, 雙曲線“S”型曲線 pH值對血紅素與O2接合的影響 肌紅蛋白不具有四級構造,其對O2的接合不具協同作用,也不受pO2或pH值的影響 - 血紅素與O2的接合尚可受到2,3-BPG (2,3-bis- phosphoglycerate)的調控,精氨酸此調控對胎兒的發育極為重要,成人的血紅素(HbA)的組成為α2β2, 2,3-BPG可接合至β次單元,使得成人血紅素對O2的 親和性降低,而胎兒血紅素(HbF)的組成為α2γ2,無 β次單元可與2,3-BPG可接合,不受2,3-BPG影響,對O2的親和性較成人血紅素高

沒有留言:

張貼留言