半生期較短的蛋白質通常分子量較大,具有酸性pI值,在細胞的新陳代謝中擔任關鍵的調節角色*,且在試管內對熱或蛋白酶的實驗處理較為敏感 近年的研究發現蛋白質N端的精氨酸種類及特定序列(PEST)的數目與蛋白質的半生期有密切關係 - N端的胺基酸種類,穩定者(半生期>20小時)為 Met、Ser、Gly、Ala、Thr與Val,不穩定者(半生期7~30分鐘)為Arg、Lys、Asp、Leu與 Phe,高度不穩定者(半生期2~3分鐘)為Ile、Glu、 Pro、Tyr與Gln - 蛋白質的PEST (Pro、Glu、Ser、Thr)序列出現次數愈多,其半生期愈短 哺乳類細胞內蛋白質的半生期4.
未經分離之蛋白質亦可被定量 如果純化對象是酵素,可取樣品溶液或組織萃取液進行催化活性分析。亦即當酵素存在下反應基質被轉換為產物之反應速率增加情形。 我們必須知道催化全反應之方程式、定量基質消失或 精氨酸產物生成之分析方法、酵素作用時是否需要輔因子如金屬離子或輔酶的參與、酵素活性與基質濃度之關係、最適 pH 值與酵素保持穩定與最高活性的溫度範圍。 酵素通常在其最適 pH 值與溫度 25~38℃ 範圍中 進行活性分析。同時所使用之基質濃度會較高,因為可以使實驗測得之催化反應初速度與酵素活性成正比。 活性(activity)是指溶液中的總酵素單位數 比活性(specific activity)則是每毫克總蛋白之酵素單位數 比活性可用以評估酵素純度,隨著純化步驟逐步提升,酵素完全純化後會達到最大恆定值(表3-5)。
(zwitterion)狀態存在,如圖3-9。一個兩性離子可作為酸(質子予體):或鹼(質子受體): 水溶液中未離子化的胺基酸所佔比例很低,在中性 pH 值時精氨酸主要以雙性分子狀態存在。具有兩性(amphoteric)特性的物質通稱為兩性電解質(ampholytes)。一個簡單的單胺基單羧基α-胺基酸,如丙胺酸,當它完全質子化時將成為一雙質子酸,它的兩個基團:-COOH 基與 -NH3+ 基均能釋出質子: 胺基酸具特有之滴定曲線 圖3-10 為雙質子態甘胺酸的滴定曲線,此圖形具有兩個特別顯著的階段,對應於甘胺酸上兩個不同基團的去質子化過程。 為 0.1 M 甘胺酸在 25℃ 時之滴定曲線。滴定過程中各階段重要之離子化物種如圖上方所示
胱胺酸殘基其中一側的肽鍵以艾德曼降解法打斷時,仍可能藉由其雙硫鍵聯結到另一條多肽上。雙硫鍵也會干擾多肽以化學或酵素方法切割的過程。兩種將雙硫鍵不可逆打斷的方法如圖3-26 所示。 圖 3-26 顯示為兩種常用的方法: 胺基酸以過氧甲酸 (performic acid)處理可將胱胺酸氧化成兩個磺基丙胺酸殘基;以二硫蘇糖醇(dithiothreitol)處理則可將胱胺酸還原成兩個半胱胺酸殘基,再進一步以碘乙酸(iodoacetate)將反應性強的游離硫醇基進行乙基化反應,以避免其再次氧化回復形成雙硫鍵構造。 圖 3-26 打斷蛋白質中之雙硫鍵。切割多肽鏈 有幾種方法可用來片段化一條多肽鏈。
當要求較高之相同性時,最具保守性之胺基酸殘基往往會被過分呈現,而使得這些基質在用來辨識相關性較低之同源蛋白質時較不適用。 測試結果顯示 Blosum62 精氨酸可提供範圍最大的蛋白質家族之可靠比對,因此它也成為許多序列比對軟體之系統原始設定表格。 圖3-31 顯示此區塊取代基質表是經由比較數以千計之序列比對小區塊所產生,這些小區塊之序列至少有 62% 完全相同。其餘不相同的殘基則被賦予一分數,說明它們被其他胺基酸殘基取代之頻率。 每次取代都對一次特定之比對分數有貢獻,正值(黃色標示者)會增加分數,精氨酸負值則會減去分數。比對序列中相同的殘基(自左上至右下角對角線黃色標示者)也因它們被取代的頻率產生一個分數。 具有特殊化學性質之 Cys 與 Trp 分別得到9與11分的高分,而較易在保守性取代中被替換之 Asp 與 Glu 則各有6與5分。 許多電腦程式利用 Blosum62 為新的序列比對打分數。
2026年1月11日 星期日
一個兩性離子可作為酸(質子予體):或鹼(質子受體): 水溶液中未離子化的胺基酸所佔比例很低,在中性 pH 值時精氨酸主要以雙性分子狀態存在。具有兩性(amphoteric)特性的物質通稱為兩性電解質
訂閱:
張貼留言 (Atom)
沒有留言:
張貼留言