精氨酸是㆒種條件性必須胺基酸。它首先由德國舒茲及史坦茲在 1866 年以結晶型式首度被分離出來 2,3,10 年後胺基酸證實存在於動物組織㆗ 4,左旋精胺酸,對於年青哺乳類動物尿素平衡以及大幅度生長是絕對必須的 5。但對於年青健康小孩及成㆟ ( <40 ) 並非是絕對必須的 6,7。然而在特定嬰兒疾病㆗ (尤其在尿素循環系統酉每缺乏 ) 大部分是缺乏 L-精胺酸,皆會導致生長及發育遲緩 8,9。對於這些嬰兒 ( 尤其是鳥胺酸胺基㆙醯轉移酉每 ) 缺乏導致發育不良、行動遲緩的嬰兒及小孩使用精胺酸治療會改善發育情形 9。在特殊壓力情況㆘ ( 譬如:巨大創傷以及敗血症 ),血漿㆗精胺酸濃度是偏低的 ( 因為此種胺基酸被用來防止其他代謝路徑。而此種胺基酸內因性合成仍少;對於身體之需求量是不足夠 10 )。總之,胺基酸之新陳代謝尤其是精氨酸㆒氧化氮路徑對於㆟體健康與疾病之間扮演相當關鍵性角色。因此醫屆同仁有必要來㆒窺胺基酸新陳代謝之全貌,並且了解分子生物醫學之最新進展。 ㆓、精胺酸需求量暨食物來源㆟類胺基酸需求量多寡可用不同方式來測定。這些包括尿素氮平衡研究,血漿胺基酸之測量以及同位素追蹤測定,所有技術皆有其優缺點 11-13,不在本文討論 範圍。令㆟驚訝的是,㆟類維持正常生理運作功能需要多少胺基酸含量仍屬未定。
酸形成 ( Nucleotides synthesis )精氨酸治療 ( Amino acid therapy ) 表㆔:L-精氨酸對於荷爾蒙分泌之影響組織 荷爾蒙 胰臟 胰島素(insulin)昇糖素(glucagons)胰臟多胜月太(PP)生長激素釋放抑制因子(somatostatin) 腦㆘垂體 生長激素(GH)泌乳激素(prolactin)腎㆖腺 兒茶酚氨(catecholamines)表㆕:精氨酸灌注對於健康婦女生長激素之影響 前言自從〝㆒氧化氮〞觀念於 1998 年獲得諾貝爾醫學獎桂冠之後,精氨酸——㆒氧化氮路徑之神秘面紗就此掀開。
蛋白質的功用麩醯胺酸壁細胞,免疫細胞的能量來源,在重症患者中的需求增加,因此在重症患者的營養品中常會添加,戒者額外自費購買麩醯胺酸粉 重症病患要丌要補充,胺基酸在醫界還是有爭議 蛋白質的功用蛋白質的功用 紅肉,白肉怎麼分 紅肉攝取量和大腸癌、心血管疾病、腦血管疾病、高血壓等發生風險為正向相關 有趣的是台灣最近的研究發現紅肉攝取量和總死亡率,心血管疾病死亡率,癌症死亡率
為了明確定義這非對稱碳原子上的四個取代基之絕對組態(absolute configuration),我們使用了另一套特殊的命名法;單醣與胺基酸的絕對組態都是用 D,L 系統(見圖3-4)加以命名的。 圖3-4 的這些結構透視式中,將碳原子作垂直排列,光學對稱原子則置於中央;碳原子從最接近末端醛基 或羧基者(紅色)開始以1至3從上至下編號。 胺基酸之R基團將固定出現在α碳的下方,L-胺基酸 之α-胺基位於左方,D-胺基酸之α-胺基則位於右方。 圖 3-4 丙胺酸立體異構物與 L-和 D-甘油醛之絕對組態間之立體關係。 蛋白質中之精氨酸殘基均為 L-型立體異構物 幾乎所有具對掌中心的生物化合物都僅以一種立體異構物的狀態天然存在,非 D 即 L。 蛋白質分子中的胺基酸殘基就都是 L 型異構物 D 型胺基酸殘基僅在細菌細胞壁中極少數胜及特定胜抗生素中被發現。
此類研究衍生出利用分析特定蛋白質的精氨酸序列以建構演化關係的“分子演化學” 由分析細胞色素c建構的演化樹 1. 蛋白質表現生物功能時需與其它分子接合,此接合通常是緊密、專一、且會形成複合體,如調控基因表現的核酸蛋白或細胞辨識的醣蛋白與細胞膜上的受體蛋白或運輸蛋白等 此接合雖然與細胞的繁殖、生長與發育等不同的生理作用有關,但蛋白質與其它分子間的交互作用與專一辨識過程均十分相似 - 親和基(ligand)是與特定蛋白質產生專一性接合的分子,如酵素的受質、產物、輔因子、阻害劑或 活化劑,甚至運輸蛋白所輸送的物質等 2. 親和基的接合作用蛋白質與其親和基的接合通常具有專一性,此專一性來自於兩者構造的互補特性與兩者接合後可產生新的安定作用力
2025年12月25日 星期四
我們使用了另一套特殊的命名法;單醣與胺基酸的絕對組態都是用 D,L 系統(見圖3-4)加以命名的。 圖3-4 的這些結構透視式中,將碳原子作垂直排列,光學對稱原子則置於中央;碳原子從最接近末端醛基 或羧基者
訂閱:
張貼留言 (Atom)
沒有留言:
張貼留言