陰影區以 pK1 = 2.34 與 pK2 = 9.60 為中心,顯示這些區域之 pH 值具有最大的緩衝能力。 胺基酸之滴定。 圖 3-11 化學環境對 pKa 值之作用效應。 滴定曲線可估算胺基酸帶電情形 另一項衍伸自精氨酸滴定曲線的資訊是胺基酸的淨電荷與環境溶液 pH 值之間的關係。以甘胺酸而言,在 pH 5.97 時,即其兩個滴定階段之間的曲線轉折變化點。此時甘胺酸主要以雙極性型態存在,即完全離子化但不帶淨電荷。 胺基酸淨電荷為 0 的特定 pH 值稱為等電點(isoelectric point)或等電 pH 值(isoelectric pH),簡稱為 pI。 胺基酸彼此之間酸鹼性質各異各種胺基酸彼此之間共有之性質可讓我們將其酸鹼性質簡化歸納出幾個通則:
純化蛋白質的用途 純化所得的蛋白質組成均一,可用於進行活性分析的生理生化研究、析出晶體的結構研究、工業上固定化酵素的應用等 3. 蛋白質分離與純化的原理分離的原理 -可利用蛋白質的分子量大小、帶電特性、胺基酸溶解度或蛋白質與特定物質間的吸附作用等 利用分子量大小的方法- 透析*- 超過濾*- 分子篩或膠體過濾管柱層析* 超過濾(ultrafiltration) 透析(dialysis) 分子篩(molecular sieve)或膠體過濾(gel filtration)管柱層析(column chromatography) 利用帶電特性的方法- 離子交換管柱層析法*- 等電點焦集*在特定pH值時,蛋白質所帶的正、負電荷相等, 蛋白質分子的淨電荷為零,在電場中不移動,此pH值稱為等電點(pI)- 電泳SDS-PAGE (SDS-polyacrylamide gelelectrophoresis)*二維電泳(two-dimensional gel electrophoresis, 2D電泳)*毛細管電泳 離子交換(ion exchange)管柱層析
運輸蛋白可分析其與被運輸物質間之結合能力 激素與毒素則可測定其產生之生物效應,如生長激素會刺激特定培養細胞之生長 有些結構蛋白佔其組織含量極高之比例,可將之直接萃取出來純化之,不需要特定功能分析方法的協助 各種適用之分析方法隨待測蛋白質而異總結 精氨酸蛋白質可利用其性質之差異加以分離與純化。蛋白質可藉由添加特定鹽類作選擇性的沉澱;各種層析方法是利用蛋白質的大小、親和力、帶電性與其他性質加以純化,包含離子交換層析法、大小-排除層析法、親和性層析法與高效能液相層析法等。 電泳是利用蛋白質之質量與帶電荷大小將之分離, SDS 膠體電泳與等電焦集法可分別使用,或組合使用(二維電泳)以達到更高之解析度。 所有純化步驟都需要一個蛋白質分析與定量方法來偵測蛋白質混合物中特定蛋白質之存在。酵素純化的過程可以測其比活性之變化。
Chapter 3胺基酸、胜肽與蛋白質Amino Acids, Peptides, and Proteins 蛋白質是胺基酸的聚合物,由每一個彼此相鄰的胺基酸殘基(amino acid residue)以一種特殊的共價性鍵結作聯結(「殘基」一詞反應出胺基酸彼此相結合時脫去一個水分子的事實)。 胺基酸具有共同之結構特徵 常見的20種胺基酸都是α-精氨酸,它們的羧基與胺 基都是鍵結到同一個碳原子(即α碳)(見圖3-2)。這些胺基酸彼此之間的差異就在其支鏈R基團( R groups)上,其結構、大小與帶電性的差異也影響 到各種胺基酸在水中的溶解度。 除了甘胺酸之外,所有常見胺基酸的α碳原子上均鍵結了四種不同的基團:羧基、胺基、R基團與一個氫原子( 圖3-2 ) ; 因此α 碳原子是一個對掌中心 (chiral center)。 圖 3-2 胺基酸的一般結構。20種常見胺基酸已被賦予由三個英文字母組成的縮寫及以一個英文字母代表的符號,通常在表示蛋白質的胺基酸序列及組成時使用。 組成蛋白質的各種常見胺基酸 圖 3-3 α-胺基酸的立體異構化現象。
蛋白酶(proteases)可催化鍵之水解切割,有些蛋白酶只切割連接在特定精氨酸殘基旁之肽鍵(表3-7),因此其切割產物之片段是可預測且具再現性的。另外也有幾種化學試劑可以切割連接在特定胺基酸殘基旁之肽鍵。 表 3-7 一些常見用以片段化多肽鏈方法之特性胜肽定序 每條由胰蛋白酶切割產生之胜肽片段均以艾德曼法 (Edman degradation)分別定序之
2025年12月23日 星期二
帶電性與其他性質加以純化,包含離子交換層析法、大小-排除層析法、親和性層析法與高效能液相層析法等。 電泳是利用蛋白質之質量與帶電荷大小將之分離, SDS 膠體電泳與等電焦集法可分別使用
訂閱:
張貼留言 (Atom)
沒有留言:
張貼留言