串聯的質譜分析 CD光譜分析 X光晶體繞射法 4. 蛋白質結構的預測Anfinsen等人的實驗證明“蛋白質的一級構造決定其立體結構”,而蛋白質的立體結構又與其功能息息 相關,因此如能由蛋白質的一級構造預測蛋白質的立體結構,胺基酸則蛋白質體計劃的研究將大大加速 蛋白質二級構造的預測- 目前多以分析已知結構的蛋白質中,各類二級構造中所出現的胺基酸種類為準* - 由Chou與Fasman於1974年提出,對每一種胺基酸
蛋白質的一級構造決定其立體構造,而蛋白質的立體構造與其生物功能有密切的關係,因此研究蛋白質的功能需了解蛋白質的一級構造 2. 蛋白質一級構造的測定為求出多肽中胺基酸的組成與排列次序 胺基酸的組成分析- 蛋白質經酸水解*後,胺基酸的混合物可利用由 Stein & Moore (1972年諾貝爾化學獎得主)所開發的胺基酸分析儀分析其組成 - 胺基酸的組成可提供多種資訊* * 疏水胺基酸*Aliphatic, Aromatic疏水性胺基酸的排列順序- 可利用胺基酸定序儀取得- Sanger*因定出胰島素分子的構造並提出分析蛋白質一級構造的方法,而獲得1958年諾貝爾化學獎 (Sanger另因提出分析DNA序列的方法,於1980年再獲得諾貝爾化學獎) - 現今,大多數蛋白質的胺基酸序列可由基因的核苷酸序列推知
第一、所有只具一個α-胺基、一個α-羧基與一個非離子化 R 基之胺基酸其滴定曲線幾乎與甘胺酸相同。這些胺基酸之 pKa 值雖不相等,但非常近似。 第二、具有可離子化 R 基之胺基酸其滴定曲線較為複雜,其有三個滴定階段,分別對應於三個離子化步驟,因此它們具有三個 pKa 值。 同樣以游離狀態暴露於水溶液環境中,20種常見胺基酸中只有組胺酸之R基(pKa = 6.0)能在接近中性pH值環境中提供最佳之緩衝力。這也是大多數動物與細菌胞內與胞外液體之常見pH值。 胜肽與蛋白質Peptides and Proteins 生物體中存在的多肽大小差異甚鉅:小至僅含 2、3個胺基酸,大至由數千個胺基酸所組成。
(以酵素為例)依照人體所需分成 3 種 人體無法製造的精氨酸一定要由飲食中得到的人體在特定情形下無法製造或無法製造足夠的胺基酸需從飲食補充 人體可以製造的精氨酸無需從飲食中得到的含有人體所有必須胺基酸的蛋白質稱為完全蛋白質或優質蛋白質 絕大多數的動物性蛋白質都屬於完全蛋白質除了…… 植物性蛋白質中,只有大豆類屬於完全蛋白質備註:還是有含量較少的胺基酸,如:甲硫胺酸 必須胺基酸缺 離胺酸 離胺酸 色胺酸限制胺基酸 嬰幼兒時期轉換精胺酸的能力較低落
圖 3-31 Blosum62 表。 圖3-32 顯示此特徵序列(方框內)為一12個胺基酸之嵌入序列,接近蛋白質之胺基端。黃色標示者為在所有比對序列中均相同之殘基。 古生菌與真核生物均具有此特徵序列,但嵌入序列卻有顯著的差異;特徵序列的差異反映出兩群生物在演化上的歧異性。 可以胺基酸序列比較,繪製演化樹。 圖 3-32 EF-1/EF-Tu 蛋白質家族的特徵序列。 總結 蛋白質序列中富含蛋白質結構與功能之資訊,也包含地球上生物演化的證據。 目前正有許多精心設計的方法用以分析同源蛋白質中變化緩慢的胺基酸序列,以期追蹤生物演化的進程。 蛋白質怎麼來的?胺基酸是蛋白質的最基本結構胺基(鹼性) 羧基(酸性) 如果胺基多於羧基則為鹼性胺基酸,反之,就是酸性胺基酸,兩者數目一樣,為中性胺基酸 2 蛋白質怎麼來的?蛋白質是DNA的最終產物蛋白質怎麼來的?從遺傳密碼到蛋白質甲硫胺酸
2025年6月1日 星期日
可利用胺基酸定序儀取得- Sanger*因定出胰島素分子的構造並提出分析蛋白質一級構造的方法,而獲得1958年諾貝爾化學獎 (Sanger另因提出分析DNA序列的方法,於1980年再獲得諾貝爾化學獎)
訂閱:
張貼留言 (Atom)
沒有留言:
張貼留言