2019年5月27日 星期一

仁寶則擁有東芝(Toshiba)等業者液晶電視訂單,預估 2009 年出貨量約達 350 萬台

台灣LCD TV 的組裝代工廠幾乎都集中在冠捷、瑞軒、仁寶、緯創、友達和鴻海六大組裝廠手中,明顯呈現聚集化趨勢,佔台灣的全球代工訂單逾 90%,促使代工產業競爭更加激烈。目前冠捷為台灣最大液晶電視代工廠,手中握有包括飛利浦(Philips)、大陸電視品牌業者等訂單,預估 2009 年液晶電視總出貨量可達約 800萬台規模;仁寶則擁有東芝(Toshiba)等業者液晶電視訂單,預估 2009 年出貨量約達 350 萬台;緯創則同樣擁有東芝等業者訂單,至於三星、夏普、Panasonic等品牌業者,對於台廠液晶電視釋單量能仍相當有限,表 4 為台灣 LCD TV 代工集中前六大廠。表 4 台灣 LCD TV 代工集中前六大廠資料來源:拓墣產業研究所,2009/11第二節 產品的差異化程度目前主要的消費型電視機大致可分為直視型與背投電視兩大類,直視型電視依厚度可分為較厚的 CRT TV 與較薄的平面型(Flat Panel) TV 兩種,而平面型又可再分為電漿電視(PDP TV)與液晶電視維修(LCD TV)兩種,投影型一般分為前投式與背投式,前投式一般出現在商用市場,而背投式電視機依光機引擎技術可分為CRT- based、LCD-based、DLP-based、LCOS-based 等四種。平面顯示器(FPD)畫質方面技術的發展,基本上都是以原有 CRT TV 的畫質表現做為範本,畢竟 CRT TV 技術已達到進化的頂點,加上現在一般消費者習慣CRT TV 的畫質表現,在選購新一代的 FPD TV 時通常會拿 CRT TV 的畫質表現做為比較參考,因此各種 FPD TV 畫質技術的發展目標,首先就是要趕上,再來就是要超越 CRT TV。在 LCD TV 市場邁向成熟化階段,高附加價值的 LCD TV 成為驅動消費者願意花費更高價格來購買,像是局部黯淡技術所帶來在動態對比/範圍、低功耗、無汞、以及高反應速度等性能優勢,成為呼聲最高的主流附加價值功能之一。


液晶的結構(1) 絲狀液晶(向列狀液晶)(nematic liquid crystal):說明:分子長軸方向相互平行。此類型液晶因分子的排列,對外加電場的變化反應速率最快,因此普遍應用在液晶電視維修及電腦顯示器上。(2) 脂狀液晶(層狀液晶)(smectic liquid crystal):說明:分子的排列具有層狀規則性,且各層間分子有一定的方向。此類型 液晶因分子的排列,對外加電場變化反應較慢,因此不適用於顯示器上, 多用於光記憶材料的元件上。(3) 膽固醇液晶(扭層液晶)(cholesteric liquid crystal):說明:分子的排列,具有相互平行的層狀規則性,同一層面上各分子長軸 的方向雖然相同,但相臨層面上分子的長軸方向並不相同,而具有一固定夾角。因平面間的距離會隨著溫度而變化,因此會反射不同波長的光,這種顏色隨溫度變化的特性,常用於溫度感測器上。四、液晶電視1、原理液晶是固定在透光板與濾光板之間,在液晶上施加電壓,米粒狀的液晶分子排列方式就會改變,讓光通過或不讓光通過,液晶本身不是“發光體”,也不會產生顏色。在開啟狀態下液晶成規則的縱橫排列,就能組成液晶屏液晶的每一個圖元加一個三原色(紅,綠,藍)的濾色器,由此才能產生豐富多彩的顏色。五、電漿的簡介1、物質的狀態,除了固態、液態及氣態外,當溫度很高時,會有一種新的狀態,稱為電漿態(plasma state)。


所以液晶電視維修已步入差異競爭時代,不論是畫質技術、廣告訴求,或服務標準,都可做為各品牌提出差異的切入點。第五章 液晶電視 (LCD TV)產業技術特性分析第一節 產業技術發展沿革與技術說明LCD TV 的主要特點,是使用液晶傳輸影像,液晶本身具有極化性(Polarizalility)和反射光線的作用,透過電壓的刺激改變液晶極化的角度,由不同大小電壓刺激可讓不同程度的光量通過,此原理可以讓液晶對光線的反射或透射產生強度的變化,如果控制液晶單位的電流強度,可以改變液晶的透明強度,再加上彩色濾光片就可構成繽紛色彩的螢幕影像。換言之,LCD TV 的原理就像是幻燈機,液晶板就像是幻燈片,靠著背後的光源(背光模組)穿透液晶板,才能夠讓液晶顯示板發光,再配上彩色濾光片分成 RGB 三原色光,才能顯現全彩畫面。LCD 技術雖起源於歐美,但將之發展形成產業的卻是日本。液晶最早是由奧地利的植物學家發現於 1888 年,直到 1971 年,TN(Twisted Nematic、扭曲向列的顯示)型 LCD 推出後,LCD 産業才進入真正的發展期。隨著半導體技術的發展和有源矩陣概念的提出,TFT-LCD 技術開始逐步成型,並且於 90 年代初期在日本開始産業化。現今主流的液晶顯示技術,可顯示高階彩色影像的主動矩陣型(Active Matrix)液晶,以 TFT(Thin Film Transistor)等主動元件來驅動各個像素液晶的方式,其中較常見的主動元件是非晶 Si-TFT (Amorphous Si-TFT),TFT 是以靜態驅動液晶故可應用於大面積、高解析度畫面,並且維持高顯示品質。圖 9 為 TFT-LCD 技術發展沿革,從 1990 年開始,日本的 Toshiba 首度將TFT-LCD 應用在 10.4 吋的筆記型電腦(NB)面板上,開始帶起了全球顯示器產業的革命。在 TFT-LCD 產業有個十分有趣的現象,幾乎只要每前進一個世代,都會發生產能過剩,造成價格下滑,因而擴大產品應用領域,然後供不應求的情形開始發生,促使 TFT-LCD 前進一個世代,「液晶循環」就因此而生了。在 1995 年以前,TFT-LCD 還只是單純的應用在筆記型電腦(NB)面板上,主要還是以日本為發展重心。但是自 1996 年開始,TFT-LCD 進入了第三代生產線,也開啟了液晶顯示器的應用,在發展初期由於材料及零組件價格昂貴,生產良率不高且又必須面臨與 CRT 顯示器的競爭,發展過程非常艱辛。隨著韓國和台灣開始加入 TFT-LCD 的生產,競爭可說更加激烈,但是韓國和台灣液晶面板廠商挾著量產技術的優勢及較低廉的人工成本,雖然在關鍵材料及零組件的取得成本稍高於日本,但是還是非常有競爭力,並且淘汰了一些日本廠商。


推薦連結:生活相關知識分享


沒有留言:

張貼留言